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Abstract. In situations where the signal of the analysed particle is tangled up with orders of magnitude more
background, its analysis may benefit from the use of a pattern classification method to discriminate the sig-
nal out of the background candidates. We present and explain the basic Linear Discriminant Analysis and
the modifications brought — the use of cascaded cuts and of a locally optimized criterion — to adapt it to
the conditions encountered in the field of heavy ion Physics. We show that this optimized multicut Linear
Discriminant Analysis has a higher performance than classical selection cuts and provides a very fast and

easy selection cut optimization.

1 Introduction

Particle search in a collision event consists in discrimi-
nating the signal (what is wanted) and the background,
or noise (fake candidates). This pattern classification is
achieved through the measurement of several characteris-
tics for each candidate, herein called cut variables or ob-
servables, and the discrimination relies on the fact that the
probability distributions of these characteristics are differ-
ent for the signal and the background.

The simplest method consists in applying a “straight
selection cut” on each of these variables separately, as
shown in the top of Fig. 4. We will refer to this approach as
classical analysis or classical cuts. Because these — numer-
ous — cut values are considered as independent parameters
while those variables are generally correlated, this method
may be very long to tune and usually provides an improv-
able discrimination. In this article, we will describe the
adaptation of Fisher Linear Discriminant Analysis (Fisher-
LDA), a pattern classification method widely used in data
processing, to the extreme signal-to-noise conditions of the
relativistic heavy ion collisions, and show its advantages
over the “classical analysis”

The first section explains why such methods are needed
for heavy ion Physics, and gives examples. The sec-
ond section is a short introduction to pattern classifi-
cation. Fisher-LDA and its modifications are presented
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in the third and fourth sections. Finally, the last sec-
tion explains how the final multi-variable cut is tuned
and used in practice, and shows some results. Duda
et al. and Faisan [1,2] have helped writing Sects. 3.1
and 4.2.

The method described in this paper has been imple-
mented as a plug-and-play C*™ class. Its source code and
documentation are available upon request to the author.

2 Low signal-to-noise environments

As an example of low signal-to-noise environment, we in-
troduce here briefly the context which led us to use the
LDA method. More information about (ultra-)relativistic
heavy-ion collisions can be found elsewhere, e.g. [3—5].

2.1 Relativistic heavy-ion collisions

Lattice-QCD predicts that when the energy density of
a strongly interacting system of hadrons is large enough,
matter should undergo a phase transition from a hadronic
state to a quark-gluon plasma (QGP), in which the degrees
of freedom are partonic. Parton deconfinement is made
possible in such a medium by the strong force screening re-
sulting from the high density of colour charges, similarly to
the Debye screening in an electromagnetic plasma.
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In this purpose, (ultra-)relativistic heavy ion (Pb—Pb,
Au—Au) collisions are made, with /Sy currently rang-
ing from a few GeV (AGS) to 200 GeV (RHIC), and up to
5.5 TeV when LHC starts to run.

Some of the probes of the QGP are based on strangeness
and charm, absent in the initial state of the collision.
Hadrons containing those quarks decay weakly, which en-
ables an identification up to transverse momenta in the
pQCD domain.

Those particles are best studied by reconstructing
topologically their secondary decay vertex. This can be
achieved in the detectors STAR at RHIC [6], and ALICE
at LHC [7], thanks to the tracking subdetectors: in both
cases, a time projection chamber (TPC) surrounding sev-
eral layers of silicon detectors makes possible the recon-
struction of the trajectory of the charged particles and
their extrapolation towards the primary vertex.

2.2 Cut variables

This paragraph gives examples of cut variables which can
be used for discriminating between the signal and the back-
ground (fortuitous associations of tracks) in the case of
a A% = uds — pr~ analysis by topological reconstruction.

A weak decay is characterized by a sizeable decay length
(¢t of a hundred microns for charm decays, of a couple
of centimeters for strange decays). The reconstruction of
a neutral particle decay (VO vertex) is made by examin-
ing all combinations of pairs of opposite charge tracks, and
filtering out those (background) which have a geometry in-
compatible with that of a real particle (signal).

In reality, because of the finite resolution of the detec-
tors, the reconstruction is not perfect and real particles
and a significant fraction of the background have a simi-
lar geometry. This makes the discrimination challenging,
and achievable only statistically: the candidates selected

Pion

Proton

DCA between the
daughter tracks

Fig. 1. 2-dimensional geometry of a VO vertex. The trajectory
of each of the daughter particles is a thick solid line, the ex-
trapolations towards the primary vertex are thin solid lines.
The trajectory of the reconstructed parent particle is the thick
dashed line. DCA stands for “distance of closest approach”

as signal are mostly signal, those which are filtered out
are mostly background. The proportion of signal kept or
rejected by the selection process can be estimated by simu-
lation studies for instance.

The projection in two dimensions of the geometry of a VO
vertex is shown in Fig. 1. The charged tracks are bent by the
magnetic field (here perpendicular to the figure plane), and
because the reconstruction isimperfect, the tracks of the two
decay daughters do not cross and the trajectory of the recon-
structed parent particle does not meet the primary vertex.

The decay length, the distances of closest approach be-
tween the tracks, or between a track and the primary ver-
tex, constitute geometrical variables which can be used to
discriminate the background and the signal. Most of these
variables are correlated, e.g. the distance of closest ap-
proach between a daughter track and the primary vertex is
correlated with the A decay length.

The cosine of the decay angle (cos §*) is also often used
to eliminate the background: the distribution of this vari-
able shows strong peaks at —1 and +1 for the background.
Examples of other cut variables may be found in [8], and
in [9, 10] for other analyses.

2.3 Examples of signal-to-noise ratios

Heavy-ion collisions make topological reconstruction of
the weak decays a challenging task, because of the high
charged track density (multiplicity) in the detectors. The
amount of background for a 2-particle decay scales with the
square of this multiplicity, while for of a 3-particle decay it
scales with its cube.

For the case of the 2~ = sss — A°K~ in STAR’s cen-
tral collisions, the yield of about 0.6 £2 + {2 per event [11]
and the multiplicity of more than 3000 tracks give an ini-
tial signal-to-noise ratio! only slightly above 10719, At the
reconstruction stage?, loose cuts are applied to reduce the
computing time and the disk space taken by the storage.
While these cuts remove 99.99% of the combinatorics, the
signal-to-noise ratio is still as low as 1075.

For the D° = ¢ — K~ 7t in ALICE, the initial signal-
to-noise ratio is of the order of 1078 [12]. Although this is
higher in value than for the {2, the fact that the signal and
background distributions of the geometrical variables differ
more in the case of the {2 than in that of the D° makes the
latter more difficult to reconstruct than the 2.

Analyses in such extreme conditions, also encountered
in the fields of top quark analysis or Higgs search, benefit
from the advantages brought by the pattern classification
methods. Other fields — industry, health, image processing
in general — do not deal with such situations, but rather
with poor training statistics and high numbers of observ-
ables and/or classes. The methods created for their needs
therefore do not meet ours, which made necessary the de-
velopment of a method adapted to our conditions.

L Here, not calculated in an invariant mass window selecting
the signal peak. It can therefore not be compared with the num-
bers given in Fig. 6.

2 Reconstruction of the secondary decay candidates from the
tracks, themselves reconstructed from the hits in the detectors.
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3 Pattern classification

3.1 Short introduction and general procedure

Pattern classification consists in classifying an object
(a candidate) in a category (class). The input data are
generally: p classes of objects (e.g. signal, noise), n observ-
ables defined for all the classes (n is thus the dimension
of the space with which we will work), and, for each of
the p classes, a sample of Ny objects for training and test,
k being the class index. These notations will be kept in
the rest of the article. The observables used may be cho-
sen amongst the parameters which are directly measured
(see Sect. 2.2 for an example), or may be calculated from
these.

The aim is the creation of an algorithm which is able to
classify an object into one of the classes defined. A train-
ing (or learning) phase first optimizes (tunes) the method’s
parameters until a maximum of candidates whose class
is known are classified correctly. A new object, the class
membership of which is unknown, can then be presented to
the algorithm for classification.

Figure 2 describes the data classification process. The
phase involving the detectors is the data collection. In our
case, it is the collection of the hits in the subdetectors
for example. The phases of segmentation and feature ex-
traction transform this low-level information into mid-level
information, smaller in size but more suited to distinguish
various classes. For us, segmentation corresponds for ex-
ample to the track and vertex reconstruction, and feature
extraction is the calculation of the various cut variables of
the candidates.

Sorting is the phase in which pattern classification
methods are involved. It consists in calculating, from the
previously mentioned mid-level information, high-level in-
formation: only a handful of variables — or even just one —
but which contain the relevant information to distinguish
signal and background. They are those used for the dis-
crimination between the classes. At this stage, two objects
can be compared. Yet, the final decision — classifying the
candidate into one of the classes — can be taken only after
the post-treatment phase, which takes into account an effi-
ciency and a background rejection, via the minimization of
a cost, in the calculation of the decision.

In our case, the number p of classes is two, hereafter
called signal and background (or noise) and indexed by
k € {1;2}. The signal is made of the real particle, while the

Data collection
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v Fig. 2. Data classifica-
Decision tion process

background is made of all the other candidates (e.g. combi-
natorial association of tracks, in the case of particles which
decay into two or three daughters).

3.2 Comparing the performance of various methods

In this paragraph, S and N will refer respectively to an
amount of signal and of noise left when cuts are applied.

Here are some variables that can be used as indicators
of cuts’ performance:

— Amount of signal S
— Efficiency or sensitivity or detection probability es =

%: proportion of signal that is kept by the cuts
o N, !
— Background rejection 1 — ey = —removed by cuts . 50y

Npre»cuts

tion of background that is rejected by the cuts

— Signal-to-noise ratio S/N

— Purity or specificity mg = SJFLN: proportion of kept can-
didates that actually are signal

— False alarms rate MLN: proportion of kept candidates
which are actually background

— Significance S/v/N or S//S+ N

— Relative uncertainty os/S, where og is the error on S

Our cost function will be the relative uncertainty, as
it is the indicator that directly guarantees the smallest
possible statistical error on the result®. To determine the
performance of a method or to compare various methods,
it is common to show other indicators as well, usually
by pairs:

— Signal with respect to the signal-to-noise ratio

— Signal with respect to purity: this diagram is strictly
equivalent to an efficiency-purity diagram, and also
strictly equivalent to the diagram mentioned below

— Efficiency with respect to the false alarms rate: this dia-
gram is called “ROC curve” (Receiver Operating Char-
acteristic)

— Relative uncertainty with respect to signal

In such diagrams, all the points that are reachable
with a given method, by changing the cuts, define a re-
gion, which may be a surface (case of the classical cuts) or
a curve (case of most of the other methods). In a signal-
S/N or an efficiency-purity diagram, a movement along the
curve (or along the border of the surface) inducing an im-
provement of one of the variables results in a deterioration
of the other one. In a diagram showing the relative uncer-
tainty versus the efficiency, the curve is a decreasing, then
increasing function which has a global minimum. The lat-
ter corresponds to the searched optimal cut.

The performance of a method can then be defined as
the minimal relative uncertainty achievable. In other fields
though, using the relative uncertainty as the cost func-
tion may be irrelevant. In the case of tumor detections for
example, one certainly wants to use the tumor detection
probability, and set the cut value to a high probability: this
selects more background but is safer.

3 Thus no discrimination criterion will be defined here to
compare various pattern classification methods.
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3.3 Some pattern classification methods

Many types of pattern classification methods exist, each
of them having several subtypes. We can e.g. mention the
Markov fields, the nearest neighbours methods, the trees,
the Parzen windows, the discriminant analyses or the neu-
ral networks, on top of unsupervised learning methods
which are able to determine themselves how many classes
are dealt with. Details can be found in [1]. Some methods
have already been applied to particle Physics [9,13-17].
Discriminant analyses themselves can be subdivided into
Linear, Quadratic and higher orders Discriminant Ana-
lyses, each with several criteria usable for the training, and
each with additional possibilities of non-linear data trans-
formations, space dimensionality expansion or reduction,
entangled with the basic method.

A common property of all of them is their ability to
better discriminate between the signal and the background
with respect to the classical method, and therefore to pro-
vide better results.

Many of the methods share a second essential advan-
tage over the classical cuts: they provide a transformation
of the n-dimensional space of the cut variables to a single
output value, and can be seen as functions defined from
R™ to R. While using the classical cuts consists in mini-
mizing a function (the relative uncertainty) of n variables,
most pattern classification methods reduce the problem of
cut-tuning to the minimization of an only 1-dimensional
function.

We decided to give a try to linear discriminant analy-
sis (LDA). Table 1 compares several characteristics of the
classical cuts, of the LDA method developed in this art-
icle (multicut-LDA, cf. Sect. 5), and of the artificial neural
networks (ANN), the latter being probably the most used
pattern classification method in particle Physics. The pos-
itive characteristics are emphasized in bold.

The choice of LDA over a higher order discriminant an-
alysis or over a pattern classification method like the neural
networks is justified by its extreme simplicity, which has
direct consequences like a better control of how data are

handled and selected, as well as a large gain in the amount
of time spent on setting up and tuning the method [17-19].
Moreover, although the ANN should reach a higher per-
formance than LDA in theory, choosing the right con-
figuration, the right values of the free parameters and
the training method is far from trivial, and in fact may
rapidly result in lower performances than what could be
expected.

Neural networks also suffer from the huge background
statistics: they focus on removing its overwhelming part
and leave untouched the comparatively small amount of
background which is close to the signal area. This problem
can be avoided by cascading several neural networks (it can
be seen as an equivalent of multicut-LDA, which naturally
solves the problem), each stepping up the S/N ratio by an
order of magnitude, but at the cost of an exploding number
of parameters of the method: it scales with n?, while that of
LDA scales with n.

The performances of cascaded neural networks, multi-
cut-LDA and classical cuts have been compared for A° —
pr~ topological decays in ALICE. Although almost an
order of magnitude more time had been dedicated to the
ANN, LDA achieved a better performance [18,19].

For all methods, a test phase is essential to obtain an
algorithm which works well, as its performance is not the
same if calculated on the training sample or on an indepen-
dent test sample. The latter performance is always worse
than the former, which is biased since the cuts have been
optimized for the training sample.

This is illustrated by Fig. 3, in which the distributions
of two classes are shown for the training sample, as well as
three examples of border: a straight line £, a simple curve
C which describes a bit better the boundary between both
classes, and a complex parametrization P that describes
the samples almost candidate-by-candidate.

The result of those boundaries on a test sample will be
very different: the line will have a fair performance and the
simple curve will have a better one, but the performance
of the complex curve will be bad, because, while two sam-

Table 1. Comparison of the characteristics of classical cuts, ANN, and the multicut-LDA method presented in this article

Classical cuts

Multicut-LDA Neural networks

Setting up of the method Trivial, fast Easy, fast Complex, long
Nb. of free parameters to be chosen Several (or none®) One Several
Training None Simple Complex

(or long and complex) Overtraining
Nb. of parameters tuned during the training None (or few?) Few Many
Clarity of the analysis and data treatment Under control Under control “Black box”
Linear treatment of the observables Yes Yes No
Gives optimized cuts (in the method’s scope) No* Yes Yes

Final tuning to minimize the cost function
Shape of the boundary signal/background Linear

Volume selected as being signal Convex

Complex, long

Simple, fast
Linear, but
multicut = OK
Convex

Simple, fast
Non linear

Non connex

& A maximization algorithm of the n-dimensional function can always be set up, but the complexity and processing time is
prohibitive as soon as more than half a dozen variables are used [18]
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Fig. 3. Training samples and shape of various boundaries

ples are globally close to identical, they have yet significant
local differences. This phenomenon is called overtraining
when £, C and P are actually obtained with the same pat-
tern classification method.

The performance therefore always has to be evaluated
on a sample that is independent of the training sample. Be-
cause they are able to select very sophisticated shapes in
the variables space, fancier, non-linear methods are intrin-
sically prone to overtraining, while basic LDA is not. We
will show that the LDA method developed here is also not,
provided a simple condition is respected.

4 Fisher Linear Discriminant Analysis

4.1 Basic principle of LDA

The principle of the LDA method is illustrated by the two
drawings of Fig. 4. It has been supposed that two observ-
ables, x and y, were accessible to the observer, and the
signal and background candidates have respectively been
attributed opened circles and closed triangles.

The first drawing shows the behavior of the classical
cuts, i.e. straight cuts on one or several of the observables.
It has to be kept in mind that we are interested in applica-
tions where the number of background candidates is much
higher than that of signal candidates. When the cuts are
chosen loose for the efficiency to be high (solid thick lines,
the eliminated region is in grey), the contamination of the
signal by the background is high. Tighter cuts (dashed
thick lines, the additional region cut is hatched in black)
drastically reduce the background, but the price to pay is
a small efficiency.

LDA consists in cutting along a linear combination
of all the observables, rather than along each of the ob-
servables. This linear combination is defined by an LDA
direction (or axis). The result, shown in the bottom plot,
is a better discrimination between the classes. In an
efficiency-purity diagram for example, this translates into
a more interesting position than any of the positions acces-
sible with classical cuts.
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A A
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A A
A A
A A N

A A

s AAA . A A

,,,,,,,,,,,, (@] AAA

A ASa_ AT
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o o A A
©% o % § O%?’/ég/% AoA A A A A
00 00040 A 5 M, A’
0~05C 0 [SBNG) %? K A
0 %00 o 00 ol o
X

v

Fig. 4. Basic principle of LDA: example with two variables.
Top plot: loose (solid line and grey area) and tight (dashed line
and hatched area) classical cuts. Bottom plot: LDA cut

The algorithm consists in calculating the direction of
the axis that gives an optimal discrimination between the
classes according to a given criterion. After this training
phase, a cut on the axis’s coordinate minimizing the cost
function is then chosen, which defines as border between
both classes a hyperplane perpendicular to the axis.

4.2 Fisher criterion

The most frequently used criterion for the calculation of
the axis’s direction is the Fisher criterion, which results
in what is called Fisher-LDA, introduced by Fisher in
1936 [20]. The advantage of the Fisher criterion is that, on
top of being easy to settle, it gives the exact expression of
the direction of the LDA vector, without need for a numer-
ical optimization. There is indeed maximization, but the
solution is analytical.

Let’s call Dy, the training samples (with e.g. k =1 for
the signal and k& =2 for the background). The Fisher cri-
terion consists in requiring the best separation of the pro-
jections of the classes on an axis A defined by u, i.e. the
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averages g of those projected distributions should be as
far as possible from one another relatively to their squared
widths of = > xep, (WX — ur)?, for the overlap between
the distributions to be minimal. The criterion to be maxi-
mized is:

|11 (4) = pa(A)
o} (4)+03(4)

| 2

AA) = (1)

Let x be an observation (so an n-coordinate vector).
The normalized n-coordinate vector u which drives the line
A characterizes, together with the cut value defined on the
axis’s coordinate — that is to say, on the scalar product
X -u —, the hyperplane which plays the role of a border be-
tween both classes.

Let’s call my the n-dimensional averages of the dis-
tributions and write M for the transposed matrix of
a generic matrix M. With Sp = (m; —mg2) - {m; —my)
the between-class scatter matrix, Sy =3 cp, (x —my)-
{x—my) and Sw = S1 + S5 the within-class scatter ma-
trix, we can write the Fisher criterion matricially:

tuSpu
tuSwu )

|l — pol?
AMA)=Au) = = 2
(4)=Aw) =t )
Maximizing this expression can be done analytically by
using the Lagrange multiplier method. A vector u maxi-
mizing (2) obeys: Jw € R/Sy' Spu = wu. Y(m; —mgz)-u
being a scalar, Spu is always collinear to m; — mo, and the
expression giving u becomes:
FEeR/SyH(my —mg) =

&u.

The problem is therefore reduced to a matrix inversion.

(3)

4.3 Problems with Fisher-LDA

Using the Fisher criterion, even though it is satisfactory for
many applications, raises problems in our case. The fact
that Fisher relies only on the mean and width of the dis-
tributions makes it a “global” criterion, hardly sensitive to
the local features of the distributions. The Fisher approach
can not succeed in our situations, where the initial S/N is
extremely small and the background populates the whole
space, including all the signal area. A better discrimination
between signal and background requires a local description
of the zones where the signal lies and where the background
has to be cut. The next section describes how LDA can
be improved to meet this requirement without resorting to
non-linearity.

5 Optimized multicut-LDA

5.1 Multicut-LDA

A first modification brought to LDA to better cope with
the low S/N environments is the application of several suc-
cessive LDA cuts. This also allows for a finer description of

vy
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Fig. 5. Mechanism of the multicut-LDA method. The first
LDA cut is the thick solid line and eliminates the grey area.
The second LDA cut is the thick dashed line and filters out the
hatched area. If only one cut had to be used to reach a simi-
lar background rejection, its efficiency would be much lower, as
shown by the dotted line

the non-linear boundary between the classes, the same way
as a circle can be approximated by an n-sided polygon, all
the better as n is high, and yet keeping linear properties to
some extent.

The mechanism of this method, which will be called
multicut-LDA, is depicted in Fig. 5. The first LDA direc-
tion is determined by a learning phase using all the can-
didates of both samples. A cut value is then determined
according to a criterion which will be described in Sect. 5.2,
with an efficiency on the signal close to 100%. This first cut
is applied to the learning samples, and a second LDA di-
rection is calculated with the remaining candidates. The
process is then repeated until not enough candidates re-
main in the training samples to calculate more LDA axis.

Multicut-LDA therefore provides a set of LDA direc-
tions, each being a vector u; of the space of the observables
(n coordinates). It also provides a cut value ¢; associated
to the direction u;. The value of ¢; depends on u;, and the
direction u; is a function of u;_1 and ¢;_1. Each pair (direc-
tion, cut) defines a hyperplane, and this set of hyperplanes
demarcates a connex and even convex shape, by construc-
tion, in which the candidates are considered as being signal
by the algorithm. Further studies can estimate the amount
of background selected as signal.

5.2 Optimized criterion

Multicut-LDA can be improved by replacing the Fisher
criterion by another one, which takes the local — and not
global — behaviour of the distributions into account, there-
fore more adapted to the multicut method.

Here are two such criteria:

— Optimized criterion I: given an efficiency of the LDA
cut on the signal, maximization of the amount of back-
ground removed;
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— Optimized criterion II: given a background rejection of hence we can write:

the LDA cut, minimization of the amount of signal re-
moved.

Their formulation is antisymmetric for the signal and the
background, but, as the criterion II requires a prohibitive
computing time to be run, we have not tested if these two
criteria give a similar performance. We therefore used only
the criterion I.

5.3 Function to maximize

Contrarily to the Fisher criterion, using an optimized cri-
terion requires the implementation of a maximization algo-
rithm, here expressed for the criterion I.

Let eg, be the given efficiency (chosen) of the i-th cut on
the signal and Dg, the set of candidates of the signal sam-
ple after the i — 1 first cuts. If 1 is assigned to true and 0
to false in the sum in (4), the number of signal candidates
removed by cutting at value ¢; along the axis u; is:

Si=Sipi=(l-gg)Si= > (xw<e), (4

xE'DSi

with S; the number of signal candidates (in the training
sample) used to determine the i-th direction. The value
of ¢; can also be determined so as to obey the following
equality:

2xepg, (X Wi <)

1—- S, =g, - (5)

Using directly the number S; —S;;1 to calculate ¢; is
however more judicious than using the efficiency, because
it allows to control the “locality degree” of the optimized
criterion. This “locality degree” is determined by a com-
parison of the numbers of candidates which are removed
with two numbers. 1°) The number of signal candidates
removed has to be larger than the typical size of the statis-
tical fluctuations for a sample of size S;, for the algorithm
not to trigger on one of those fluctuations. The number
of candidates removed should not be too much above this
threshold though, as the efficiency of the cut should be
kept close to 100% to take all advantage of the multicut
method. 2°) The numbers of signal and background can-
didates which are removed have to be higher than a fixed
absolute number which ensures that the candidates that
are removed are numerous enough to be really representa-
tive of the actual shape of the distributions in the area that
is cut.

In our studies, in 25 dimensions, values of 500 signal
candidates removed and above were satisfactory, for sam-
ples of 10000 to 100 000 signal candidates.

Respecting this simple condition guarantees that there
is no overtraining, so this problem can basically be consid-
ered as absent from the optimized multicut-LDAmethod.

The function f that is maximized is of course the num-
ber of background candidates that are removed by the cut;

f: R"—N
u; — Z (x-u; <¢), (6)

XGDBi

where Dp; is the set of candidates of the background sam-
ple after the ¢ — 1 first cuts.

The efficiency €, being fixed (it is a chosen parameter),
the optimization consists in maximizing f as a function
of u;. As the value of ¢; depends on u,, it needs to be recal-
culated at each step.

For the results presented in the next section, the algo-
rithm chosen to maximize f consists in varying each co-
ordinate of the vector u at a time, moving the vector by
a given angle a (for example 8°). The first coordinate is
changed until f has reached a maximum, then the second
coordinate is changed, etc. ... When all n coordinates have
been changed, the process is repeated until the vector does
not move anymore. Then « is divided by two and the whole
algorithm is repeated. One keeps dividing « by two until
the gain in number of background candidates removed be-
comes null or unsignificant.

A common problem to many maximization algorithms
is the possibility of being trapped in a local maximum. In
our case, the problem is partially resolved by the initial
condition: the natural start vector for this algorithm is the
direction found with the Fisher criterion, which guarantees
that the final result will necessarily be better than with
the Fisher criterion. We observed an average improvement
with respect to it of around 50% more background candi-
dates cut per LDA cut, although with strong variations.
One can also implement a genetic algorithm, which in prin-
ciple converges to the global maximum [21].

5.4 Size of the training samples

Determining the minimal statistics needed for the calcula-
tion of the LDA directions can be done by calculating the
performance for various sizes of the training samples. The
performance should rise, with possible oscillations, when
the size of the training samples is increased, and satu-
rate when the latter reaches the minimal size necessary for
a good determination of the LDA directions.

A lazier way to do, but a priori as reliable, is to check
that the performance of the i-th LDA cut is better than
that of the 7 — 1-th cut tightened beyond the cut value at
which the i-th cut should begin to be applied. If it is not
the case, it is a strong indication that the statistics used to
determine the i-th direction was not sufficient.

Preliminary studies done with the “lazy method” in-
dicate that 2000 candidates in each sample, possibly even
less, are already enough. This was done with 10 dimen-
sions and is not expected to change with the number of
dimensions.

Unlike for Fisher-LDA (see (1)), when the optimized
criterium is used the relative proportion of signal and
background candidates in the training samples has no
importance.
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5.5 Variables used

Because multicut-LDA selects a convex (and therefore con-
nex) signal area, the signal’s distributions have to show
only one main peak whenever possible, for the method to
be efficient.

It is also preferable to use reasonably well shaped distri-
butions, e.g. an angle value is better than using its cosine,
as the cosine function will flatten everything towards 1,
which may cause the algorithm to fail using that variable
in the optimization (the peak would be extremely narrow).
Normalizing the distributions’ shapes eliminates this con-
straint, but is a non trivial issue.

The number of variables to use is a study by itself, al-
though not very time-consuming because it should simply
be as high as possible, so as to reach the highest possible
discrimination. Non-linear combinations of the initial cut
variables can be added. The number of variables to use can
yet be limited by statistics and processing time reasons —
numbers of a few tens are not critical. Methods exist to re-
duce this number of variables while avoiding a drop in dis-
crimination (see [8]): under-optimal LDA, Principal Com-
ponent Analysis (much faster, but unsupervised, matrix-
based analysis which reduces the dimension of the working
space by taking out the least informative dimensions), or
fractional-step LDA [22] (performs dimensionality reduc-
tion while keeping a better discrimination than Principal
Component Analysis). Principal Component Analysis pro-
vides a partial solution to the normalization problem by
giving a new base of the space.

6 LDA practical guide and results

6.1 Results on real data

Optimized multicut-LDA has been tested with 25 cut vari-
ables on the = and {2 multi-strange baryons in the 200 GeV
Au—Au collisions in STAR and has shown to provide more
precise results than the classical cuts [11]: the statistical
error on the production yields was 25% (Z) to 40% (2)
larger with the classical cuts than with LDA. Furthermore,
the transverse mass spectra obtained with LDA had small
enough error bars to rule out the formula that was then
commonly used to fit it.

The method has then succesfully been applied to
STAR’s 62 GeV Au-Au collisions [23], and has proven
one of its advantages: while classical cuts had to be te-
diously re-tuned to be adapted to the new — lower than
at 200 GeV — track multiplicity, a simple loosening of the
LDA cuts calculated in [11] provided, with respect to the
re-tuned classical set of cuts, 75% more signal and a rela-
tive uncertainty on the raw amount of signal 1.6 times
lower, as shown in Fig. 6. This loosening of the LDA cuts
is made by plotting the new valley-shaped curve (relative
uncertainty versus efficiency) and determining its mini-
mum. One could also have re-calculated LDA directions
with 62 GeV simulation to have possibly more optimized
LDA cuts.

Au+Au,\Syy = 62.4 GeV, central 0-10%
LDA

Classical Classical :

Raw signal :
692 £ 48

S/N : 0.84
os/S :7.0%

Counts / 4MeV/c?
3
2
T

N
o
o
T
T

LDA :

Raw signal :
1216 £ 52

" S/N :1.66

0s/S :43%

STAR ‘

200 h  preliminary .

ol 1.1 P I T
1.65 1.7 1.65 1.7

Q invariant mass (GeV/c)

Fig. 6. STAR preliminary 2+ {2 invariant mass distributions
for central Au—Au collisions at v/Syn = 62 GeV, with classical
cuts (left) and LDA cuts (right) [24]. The grey histograms show
the amount of background estimated by rotating

6.2 How to do the final tuning

The final tuning consists in finding how many LDA direc-
tions have to be applied, and how much is the cut value
of the last one, to reach the minimum of the relative un-
certainty. In this process, those of the last directions which
have not been calculated with enough candidates in the
training samples should be discarded. The way the final
tuning is done can be illustrated by the example of the
D® — K~ 7t study in ALICE, in central Pb-Pb collisions
at v/ Syny = 5.5 TeV. As no data have been taken yet, the
results shown come from a simulation sample indepen-
dent of the training sample, and the relative and absolute
amounts of signal and background have been rescaled to
match the amounts that are expected to be found in 107
real events. The number of cut variables used is 10, and the
number of signal candidates of the training sample to be re-
moved by each LDA cut has been set to 499 (the candidate
with x-u; = ¢; is not removed), for an initial sample size
of 15967. One may also choose to remove 500 D° for the
two first cuts, and then 1000 or more for the following ones,
which have a lower background rejection factor. This strat-
egy was used in [11], as the initial signal training sample
was larger.

Figure 7 shows our cost function: with respect to the
amount of signal that passes the cuts, the relative uncer-
tainty on that variable. The valley is clearly visible, and
finding its minimum is a trivial task. In the zoom presented
in the inset, black squares have been put when an addi-
tional LDA cut was applied: the rise in performance is very
visible, in the form of a steeper slope with an additional
direction (left of a point) than without (right).

The corresponding efficiency-purity plot is shown in
Fig. 8. Such plots can be used when a different cost func-
tion is wanted. One may for example wish to have a higher
background rejection to avoid problems due to the back-
ground estimation: here, the proportion of background
falls down by a factor of more than 3.5 for the same effi-
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Fig. 7. 0g/S of the D as a function of the amount of sig-
nal, for central Pb—PDb collisions at /Sy ny = 5.5 TeV in ALICE.
The closed circle shows the performance reached with the cur-
rent classical cuts [25], and the valley-shaped curve is the locus
of the points described when the LDA cut is gradually tight-
ened (right to left). The crosses (x) mark each addition of
a new LDA direction; the open triangle shows the minimal
value reached. A zoom on the bozed area is shown in the inset
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Fig. 8. Do efficiency-purity plot corresponding to Fig. 7. The
efficiency is that of the cuts only

ciency as the classical cuts. Conversely, a higher efficiency
may be desired to reduce possible bias due to tight cuts:
here, LDA multiplies the efficiency by 2 for a purity equal
to that given by the classical cuts. It can then be checked
on the relative uncertainty curve that the statistical error
obtained is not too much higher than the minimal one.

A zoom on Fig. 7 is presented in Fig. 9 to illustrate the
multicut process. The black curves (LDA) and the black
point (classical) have been obtained by assuming a back-
ground estimation via rotating, i.e. the VO vertices are
reconstructed with one of the two tracks rotated by 180°.
This preserves the combinatorial background and destroys
the signal (it can not be reconstructed). The grey curve and

§ 4.5 -
5 4F
o 350
2 -
= 3F
[ -
7 -
25F
2F
L5 % Best LDA cut value
1 C 21 directions
050
O E ) I l L1 1 1 l L1 1 1 l ) l L1 1 1 l L1
0 1000 2000 3000 4000 5000

Signal (counts)

Fig. 9. Zoom on Fig. 7. Black and grey curves and symbols
are for background estimation respectively with rotating and
event-mixing. The lines show the curves that are obtained with
16, 18 and 20 LDA cuts instead of 22 (with rotating), the dashed
line shows how could be this curve when 24 cuts are applied

point will be explained below. In this relative uncertainty
versus efficiency diagram, as already said, each LDA cut
results in a valley-shaped curve. A cut along the first di-
rection is applied and progressively tightened until the cut
value ¢; is reached (cf. Sect. 5.3). At this point, the algo-
rithm has calculated a second LDA direction, which has
a better performance than the first one. The second LDA
cut is therefore applied and progressively tightened, till the
cut value co, and so on. The plot shows the end of the pro-
cess, and the envelope of all the valley-shaped curves is the
locus drawn when the LDA cut is gradually tightened (and
directions progressively added).

The minimum of this locus, indicated by the opened tri-
angle, is obtained with the searched number of directions,
here 21. The optimal number of cuts to use in this case is
therefore 21, and the 21st cut value corresponding to the
minimal relative uncertainty can easily be determined by
the program. It obviously belongs to | — 0o; ¢21].

The curve obtained with a 22nd direction is rather simi-
lar to that obtained by keeping tightening the 21st cut
beyond co1. The 22nd direction has been determined with
5488 signal and 1120 background D° in the training sam-
ples, and was the last one calculated for low statistics rea-
sons. If the statistics were enough, further calculated direc-
tions should behave like the dashed curve labelled “24 ?7”:
an improvement is brought, but the relative uncertainty
does not fall below the previously found minimal point, as
this point is the absolute minimum of the envelope.

Yet, the final value of the LDA cut is not determined at
this stage, because the final error bar depends on other fac-
tors. There is usually further “manipulation” of the data,
such as an efficiency correction and a fit to some distri-
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bution. The minimal final statistical error may then be
obtained for another value of the LDA cut. The process is
identical though, therefore simple and instantaneous, and
one may wish to use various LDA cut values, depending on
the physics observable looked at.

The grey curve of Fig. 9 illustrates how fast is a re-
tuning: this curve results from the assumption that the es-
timated background is obtained from event-mixing rather
than rotating. Event-mixing consists in reconstructing VO
vertices with one track taken in an event, and the second
track taken in another event of similar multiplicity and pri-
mary vertex location. Like rotating, this destroys the signal
candidates, but preserves the combinatorial background.
As many events can be mixed together, event-mixing pro-
vides an estimation of the amount of background with
a much smaller error bar than rotating (other characteris-
tics have to be taken into account though, but a compar-
ison of the background estimation techniques will not be
addressed in this article). This results in a different cost
function curve. Again, the new minimum is easily found, as
well as the corresponding LDA cut.

As a summary, these preliminary results show that the
relative uncertainty on the raw number of D° is divided
by 2 for a similar efficiency when LDA is used, compared
with the classical cuts. When rotating is replaced by event-
mixing to estimate the amount of background, the bottom
of the valley is not much lower, but is much flatter and ex-
tends up to 5500 signal counts. The cut efficiency can thus
be multiplied by 1.8 while the relative uncertainty is left
untouched.

7 Conclusions

Because it uses linear combinations of the n observables,
LDA transforms R” into a set of segments that is equiva-
lent to R. Cut-tuning is therefore obvious, as it consists in
a simple minimization of a one-dimensional function (e.g.
the relative uncertainty). Moreover, as the n-dimensional
information of the distributions is taken into account,
rather than the n projections as the classical cuts do,
LDA also provides an improvement of the statistical error
bars. While Fisher-LDA can not deal with low initial
signal-to-noise ratios such as those considered above, op-
timized multicut-LDA significantly reduces the statistical
uncertainty in the analyses presented. A drawback of this
method is that it can be used only with two classes: it is
not able to distinguish e.g. several sorts of backgrounds,
and removes all of them as if it was a single contribution.
Moreover, the selected area is always convex.

The method has fewer parameters to be tuned dur-
ing the training phase than pattern classification methods
like the neural networks. The minimal size of the samples
needed to train the method correctly is therefore lower for
LDA. Furthermore, LDA has only one parameter to be set
by the user — namely, the efficiency of each cut —, which
makes the method fast to set up.

LDA can also be used to calculate a systematic error
due to the cuts: the LDA cut can be tightened and loosened

while permanently staying on the optimized curve shown
in Fig. 7. As a set of LDA cuts is easy and fast to deter-
mine, results can be obtained with several of them and
compared together. Finally, classical cuts can be rapidly
derived from the projected distributions of the candidates
cut with LDA, and they can for instance also be used to
estimate a systematic error.

When an analysis is done under other conditions (e.g.
other collision centrality, other range of transverse momen-
tum p, ), the relative proportion of background may be
different, and hence tighter or looser cuts may be needed.
While classical cuts require another n-dimensional mini-
mization, previously calculated LDA cuts can simply be
adapted to the new environment by a tightening or a loos-
ening, until the new minimum in relative uncertainty is
reached. LDA can also be trained with specific candidates
(e.g. low-p 1 , mid-multiplicity events, .. .) and therefore be
optimized for such characteristics.
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